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Series study of random percolation in three dimensions 

D S Gaunt and M F Sykes 
Department of Physics, King’s College, Strand, London WC2R 2LS, UK 

Received 26 July 1982 

Abstract. New high-density series data for the mean number, percolation probability and 
‘susceptibility’ of finite clusters are presented for bond and site percolation on four standard 
three-dimensional lattices. Our Pad6 approximant analysis of both high- and low-density 
series makes particular use of the rather precise unbiased estimates of the percolation 
threshold, p c ,  obtained recently by Heermann and Stauffer for the simple cubic lattice. 
For this lattice we obtain the biased estimate y = 1.73 50.03 for the site problem and a 
similar estimate but with larger uncertainties for the bond problem. Such a value is 
significantly larger than earlier series estimates. Assuming y to be universal, we obtain 
precise, although biased, estimates of pc for both bond and site percolation on all four 
lattices. Using the bond estimates of p c  we find an overall biased estimate of /3 = 
0.454 0.008 for bond percolation on all three-dimensional lattices. (The corresponding 
site problem requires further study.) Scaling estimates of other critical exponents are 
U =-0 .64 i0 .05 ,8=4 .81*0 .14 ,A=2 .18 i0 .04 ,  v=0.88*0.02 andr)=0.03+.0.03. 

1. Introduction 

At the present time, none of the critical exponents for the percolation problem (Stauffer 
1979, Essam 1980) are known exactly for any of the two- or three-dimensional lattices. 
However, in two dimensions, the well known relationship (Kasteleyn and Fortuin 
1969, Giri et al 1977, Kunz and Wu 1978) between percolation and the Potts model 
(Wu 1982) has led to conjectures (den Nijs 1979, Nienhuis et a1 1980, Pearson 1980) 
for the percolation exponents that are strongly supported by numerical estimates 
obtainod from series expansions (Domb and Pearce 1976, Sykes et a1 1976c, Blease 
er a1 1978, Dunn et a1 1975, Essam et a1 1976, Adler and Privman 1981, Adler et 
al 1982, Gaunt and Sykes 1976) and other techniques (Leath and Reich 1978, 
Eschbach et a1 1981, Blote et a1 1981). In three dimensions, the situation is less 
satisfactory and there is no general consensus concerning the values of the critical 
exponents obtained from series expansions, Monte Carlo (MC) simulations or any 
other technique. The exponent p describing the behaviour of the percolation probabil- 
ity close to the critical percolation threshold p c  is a typical example. Sykes er a1 
(1976a) have given a series estimate for site percolation on the face-centred cubic 
(FCC) lattice of 

@ = 0.42 f 0.06 FCC(S). (1.1) 
A more precise (but not necessarily more accurate) series estimate was obtained by 
Blease et a1 (1976) for bond percolation on the FCC lattice, 

p = 0.47 f 0.02 FCC(B). (1.2) 
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On the other hand, a typical MC estimate of p, this time for the simple cubic (sc) site 
problem, is (Kirkpatrick 1976) 

p = 0.39* 0.02 sc(s). (1.3) 
Other MC estimates include p = 0.41 *0.01 (Sur et a1 1976) and p = 0.42~k0.02 
(Nakanishi and Stanley 1980). Thus, we see that either the uncertainties (or more 
precisely the confidence limits) are quite large as in (1.1) or else, as in (1.2) and (1.3), 
the uncertainties are smaller but the estimates are mutually inconsistent. Similar 
difficulties beset the estimation of other percolation exponents in three dimensions. 

Quite recently, renewed efforts have been made to obtain more accurate estimates 
of percolation exponents in three dimensions. Gaunt et a1 (1981) have utilised three 
different definitions of the percolation probability for the simple cubic bond problem 
all of which can be shown rigorously to have the same critical exponent p. By deriving 
and analysing long series expansions for all three of these functions they found 

p = 0.463 * 0.013 - 12Apc SC(B) (1.4) 
where Ap, = p c -  0.247. The first (inherent) uncertainty reflects the consistency of the 
numerical analysis while the second term describes the effect of uncertainties in the 
location of p,. (In contrast to two dimensions, p c  is not known exactly for either site 
or bond percolation on any three-dimensional lattice.) As emphasised by Gaunt et 
al, the lack of agreed, precise and unbiased estimates of pc in three dimensions is a 
serious obstacle to the determination of precise estimates of critical exponents by 
series methods. For the simple cubic lattice, this deficiency has been remedied by the 
MC simulations of Heermann and Stauffer (1981, to be referred to as HS). Using 
system sizes up to loo3 sites and finite-size scaling theory, they obtained a precise 
and unbiased estimate in the case of site percolation of 

p, = 0.3117*0.0003 sc(s). (1.5) 
For the corresponding bond problem, a smaller investment of effort resulted in the 
rather less precise estimate of 

pc = 0.248*0.001 SC(B). (1.6) 
In the present paper we continue our earlier study by presenting some new high-density 
series data and performing a preliminary analysis in which the estimates (1.6) and 
especially (1.5) play a central role. We obtain new, precise, biased estimates of p, 
for site and bond percolation on all three-dimensional lattices and study the critical 
exponents y, p, y’ and 8, making new, biased and reasonably precise estimates of y 
and p. Although precise estimates of critical amplitudes are also highly desirable for 
calculating universal critical amplitude ratios (Aharony 1980), we believe that further 
efforts in this direction are, for the moment, premature. 

We have derived high-density series in powers of q (=  1 - p ) ,  the density of 
unoccupied sites, for the face-centred cubic (FCC), body-centred cubic (BCC), simple 
cubic (sc) and diamond (D) lattices. The expansions are for the mean number K of 
finite clusters per lattice site, the percolation probability P and the ‘susceptibility’ x 
per lattice site which is closely related to the mean size S of finite clusters. (For the 
definitions, see Sykes et al (1976b) and equation (2.19).) They are given in the 
appendices up to order q”, where for the bond problem N = ~ ~ ( F c c ) ,  ~ ~ ( B c c ) ,  36(sc), 
2 5 ( ~ )  and for the site problem N = ~ ~ ( F c c ) ,  ~ ~ ( B c c ) ,  33(sc), ~ O ( D ) .  Further details 
and additional data will be published in due course. Prior to this paper, the only 
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published data of this kind were for the percolation probability up to q33 for the sc 
bond problem (Gaunt et a1 1981) and up to q4’ for the FCC site problem-although 
in the latter case the last four coefficients given by Sykes et a1 (1976a) are now known 
to contain small errors. As already mentioned, expansions based upon slightly different 
definitions of the percolation probability for bond percolation have been given for 
the sc lattice up to q 3 0  by Gaunt et al (i981) and for the FCC lattice up to q6’ by 
Blease et a1 (1976), whose papers should be consulted for details of the alternative 
definitions. 

In this preliminary communication, we have based our series analysis on the 
assumption of simple power-law singularities. We neglect confluent singular terms 
despite the knowledge that they appear to be responsible for some well known 
universality-violating puzzles, e.g. in the three-dimensional Ising model (Nickel 1982, 
Zinn-Justin 1981, Roskies 198 1) and in the two-dimensional percolation problem 
(Adler et al 1982). In these cases, however, the discfepancy was only about 1% and 
1.7%, respectively, in contrast to the present situation where the discrepancy between 
(1.2) and (1,3), say, is almost 20%. In the first instance, therefore, we are interested 
in discovering to what extent, if any, such a discrepancy can be resolved using 
conventional techniques coupled with much more extensive series data. In any case, 
such numerical evidence as there is (J Adler, private communication) suggests that 
for percolation in three dimensions the leading confluent exponent A1 is close to 1 
and does not seem to modify the dominant exponent as much as in the two cases 
mentioned above. A renormalisation group (RG) field-theoretic calculation by Hough- 
ton et a1 (1978) based upon resummation of the E expansion gives a correction-to- 
scaling exponent w (Wegner 1972) in the range 0.914-1.13, while Reeve eta1 (1982) 
using the methods of Baker et a1 (1976) give w = 1.5 .  The exponent w ,  which is 
calculated from the derivative of the p function evaluated at the fixed point, is related 
to Al through Al = wv where v is the critical exponent for the correlation length and 
appears to lie in the range 0.8-0.9 (Essam 1980, Stauffer 1979). 

While paying particular attention to the analysis of the new high-density series, 
we have also taken the opportunity to re-analyse the corresponding low-density series 
(Sykes et a1 1976d). Our main tool has been pole-residue plots derived from Dlog 
Pad6 approximants (Gaunt and Guttmann 1974). For the high-density series, many 
of the initial coefficients are zero and, consequently, we have found it useful to consider 
Dlog Pad6 approximants from a wide region of the Pad6 table (and not just the central 
and main off-diagonal sequences). For many of the series, including the low-density 
ones, the Dlog Pad6 approximants detect non-physical singularities (and, for the 
high-density series, in relatively large numbers) lying closer to the origin than p c  either 
on the negative real axis or in the complex plane. These singularities frustrate any 
attempt at a ‘clean’ ratio analysis (Gaunt and Guttmann 1974), even of the low-density 
series, and interference from them will undoubtedly slow down convergence of the 
Dlog Pad6 approximants close to p c .  At high densities, the non-physical singularities 
cause least disturbance to the percolation probability series, more to the susceptibility 
and most to the mean number series. (No further reference will be made to the mean 
number series since our analysis fails at both high and low densities.) The above 
pattern of behaviour parallels that observed for the low-temperature series of the 
three-dimensional Ising model (see Gaunt and Guttmann 1974, § 1II.D) with the 
spontaneous magnetisation replacing the percolation probability, the initial susceptibil- 
ity replacing the susceptibility or mean size and the zero-field free energy replacing 
the mean number (Kasteleyn and Fortuin 1969). 
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This paper is divided into three sections and two appendices. In the next section, 
we present our analysis of the low- and high-density series for the standard three- 
dimensional lattices and give new biased estimates of the critical exponents y and p, 
and of p c  for both bond and site percolation. In 0 3, we summarise our main results, 
making scaling predictions for the remaining critical exponents, and compare our 
results with those obtained by other workers. The new high-density series data are 
collected together in the appendices. 

2. Series analysis 

2.1. Low-density mean size 

We begin by re-analysing the low-density mean size series, S(p), for the site problem 
on the sc lattice. We have chosen this particular series, to be found in the paper by 
Sykes et a1 (1976d), because of the existence of a precise unbiased estimate, (1.5), of 
p c  due to HS. Although all the series coefficients presently available are positive, a 
ratio analysis (Gaunt and Guttmann 1974) is unsatisfactory since the ratios of 
coefficients are influenced and ultimately dominated by a non-physical singularity on 
the negative real p axis lying closer to the origin than does p c .  Instead we have formed 
Dlog Pad6 approximants (Gaunt and Guttmann 1974) to S ( p )  and plotted in figure 
1 the location of the appropriate pole against the corresponding residue. From these 
results, which define a relatively smooth curve (pole-residue plot) we may read off a 
biased estimate of the critical exponent y corresponding to (1,5), namely 

y = 1.73*0.02+33Apc sc(s)  (2.1) 

1 

Pol e 

Figure 1. Pole-residue plot. Low-density expansion of mean size S ( p ) ,  sc site problem. 
The arrow locates p c  as given by HS (see equation (1.5)).  
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where Ap,=p,-0.3117. Assuming that lAp,(S0.0003 as in (1.5) gives 

y = 1.73b0.03 sc(s). (2.2) 

HS also gave an unbiased estimate, (1.6), of p c  for the bond problem on the sc 
lattice, From the pole-residue plot obtained using the Dlog PadC approximants to 
the S ( p )  series (Sykes er a1 1976d) we find, corresponding to (1.6), 

y = 1.74 * 0.03 + 73Ap, SC(B) (2.3) 

y = 1.74*0.10 SC(B). (2.4) 

where Ap, = p c  - 0.248. If IAp,l s 0.001 as in (1.6), this gives 

The fact that the uncertainty in (2.4) is so much larger than that in (2.2) reflects, 
to a large extent, the correspondingly large uncertainties in p c  (cf (1.5) and (1.6)). 
(Note that the inherent uncertainties in (2.1) and (2.3) are comparable.) However, 
the central estimates in (2.2) and (2.4) are quite close and support the hypothesis of 
a common value of y for both bond and site percolation on the sc lattice. According 
to the universality hypothesis (Essam 1980, Stauffer 1979), y should be the same for 
both bond and site percolation on all three-dimensional lattices. Hence, assuming a 
universal value of y, we adopt (2.2) as our best (biased) estimate. 

We now use (2.2) in conjunction with pole-residue plots from Dlog PadC 
approximants to S ( p )  series (Sykes et a1 1976d) to obtain precise but biased estimates 
of p c  for both bond and site problems on all the standard three-dimensional lattices. 
Thus, we find 

p c  = 0.1198 * 0.0003 FCC(B) 

= 0.1795 f 0.0003 BCC(B) 

= 0.2479 f 0.0004 SC(B) 

= 0.3886* 0.0005 D(B) 

and 

p c  = 0.1998 * 0.0006 FCC(S) 

= 0.2464 * 0.0007 BCC(S) 

= 0.3117*0.0003 SC(S) 

= 0.4299 0.0008 D(S) (2.6) 

where for the sc site problem we repeat the estimate in (1.5). For the sc bond 
problem, the estimate in (2.5) differs from (1.6) because of the difference in (2.2) and 
(2.4). 

We have obtained new estimates of p c  and of y by re-analysing our old series 
(Sykes et af 1976d) for S ( p ) ;  that is, using no additional coefficients. The increased 
precision has resulted solely from the use of the more precise estimate, (lS), of p c  
for the sc site problem. Our new estimates of p c  in (2.5) and (2.6) are larger than 
earlier estimates (Sykes et a1 1976d, Dunn et a1 1975) in all cases, although with one 
exception the new estimates lie well within the relatively large uncertainties of the 
earlier estimates. The exception is the FCC bond problem for which the earlier estimate 
of p c  was the most precise (Dunn et a1 1975); however, the uncertainties in the new 
and earlier estimates of p c  just overlap even in this case. Our new estimate (2.2) of 
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y is significantly larger than the central value in our earlier estimate (Sykes et a1 1976d), 

y = 1.66k0.07, (2.7) 
although the large uncertainties in (2.7) just include the central value in (2.2). This 
increase in the magnitude of our central estimate of y is due to the increases mentioned 
above in our estimates of p c .  To demonstrate this, we note that (2.7) was derived 
from a pole-residue plot for the FCC bond problem which gave the result (Sykes et 
a1 1976d, equation (3.3)) 

y = 1.66*0.02+9OApc FCC(B) (2.8) 
where Ap, = p c -  0.1 190. Assuming that IApcl s 0.0005 ( D u m  et a1 1975) gives (2.7). 
However, if we use our new central estimate of p c  = 0.1198, then (2.8) gives a central 
value of y = 1.732 in excellent agreement with the central estimate in (2.2). 

2.2. Percolation probability 

In contrast to low densities, many of the high-density series have been extended 
by a significant number of terms. We now use the more precise estimates of p c ,  just 
determined, to analyse these expansions and determine biased estimates of critical 
exponents, The best converged series at high densities are those for the percolation 
probability. For the sc bond problem the recent work of Gaunt et a1 (1981) gave 
(1,4), which in conjunction with our new estimate, (2.5), of p c  gives 

/3 =0.452*0.018 SC(B). (2.9) 
The three extra coefficients given in appendix 1 do not change (1.4) and hence (2.9) 
is unaffected also. For the FCC bond problem, we have used the analogous work of 
Blease et a1 (1976) who give 

/3 = 0.474 f 0.002 - 24Apc FCC(B) (2.10) 

/3 = 0.455 * 0.009 FCC(B). (2.11) 

where Ap, = p c  - 0.1 190. Use of (2.5) for p c  then yields 

Similarly, we have constructed the pole-residue plots shown in figures 2 and 3 for 
the D and BCC bond problems, respectively, using the series for P ( q )  given in appendix 
1. We find 

/3 = 0.447 * 0.009 - 1 lApc DiB) (2.12) 

where Apc = p c  - 0.3886, and 

p = 0.456 i 0.020 - 18Apc BCC(B) (2.13) 

where Ap, = p,-0.1795. Assuming the uncertainties given in (2.5) then gives 

p = 0.447 * 0.015 DiB) (2.14) 
and 

/3 = 0.456*0.025 BCCiB). (2.15) 
The estimates in (2.9), (2.11), (2.14) and (2.15) provide strong support for a 

universal value of p for all three-dimensional bond problems. To our knowledge this 
is the first time that reasonably precise estimates of p have been given for all four 
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Figure 2. Pole-residue plot. High-density expansion of percolation probability P ( q ) ,  D 
bond problem. The arrow locates p c  as given in (2.5). 

standard lattices which actually agree to within their estimated uncertainties. By 
considering the overlap range of the four estimates, and assuming a common value, 
we obtain an overall bond estimate for d = 3 dimensions of 

p = 0.454 f 0.008 d = 3 (B).  (2.16) 

All the allowed values of p for all four lattices satisfy 

0.431 s p E 0.481 d = 3 (B). (2.17) 

We turn now to the P ( 4 )  series for the site problem, where the corresponding 
analysis turns out to be much less satisfactory. Forming pole-residue plots as before 
yields the estimates 

p = 0.405 f 0.025 FCC(S) 

= 0.377 * 0.012 BCC(S) 

= 0.403 f 0.008 SC(S) 

= 0.365 f0.08 WS) (2.18) 
where the uncertainties include an inherent uncertainty plus a contribution arising 
from the uncertainties in pc given in (2.6). There is now no region where the estimates 
overlap for all four lattices and the two most precise estimates (namely, those for the 
BCC and sc lattices) share no overlap region. If we reject the unlikely notion of a 
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Figure 3. Pole-residue plot, High-density expansion of percolation probability P ( q ) ,  BCC 
bond problem. The arrow locates pc as given in (2.5). 

lattice-dependent p for site percolation in three dimensions, the only possible interpre- 
tation is that we have underestimated the uncertainties quoted in (2.18). In fact there 
is almost a small overlap region centred around 0.392 but, if one accepts a universal 
p for both bond and site percolation in three dimensions, then such a value is unlikely 
since it is inconsistent with both (2.16) and (2.17). Indeed, all of the site estimates 
in (2.18) are inconsistent with our bond estimate (2.16). Furthermore, even (2.17) is 
inconsistent with the estimates in (2.18), except that for the D lattice where the 
uncertainty is very large and even in that case the ranges only just overlap. For all 
of these reasons, the site estimates, (2.18), of p are considered unreliable, the 
convergence implied by the uncertainties in (2.18) is only apparent and henceforth 
little significance will be attached to the estimates (2.18). We do not know in detail 
why the series for the percolation probability in the bond problem should be so much 
better behaved than series for the site problem containing a comparable amount of 
information. Presumably it is somehow connected with differences in the strength 
and distribution of non-physical singularities and/or in the nature of the confluent 
corrections to the dominant physical singularity. This problem is being studied further. 
We note here, however, that the coefficients of the bond series in appendix 1 are 
strictly alternating, while for the site problem (see appendix 2), this happens only for 
the FCC lattice, the behaviour for other lattices being more complicated. It is perhaps 
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significant that of all the central site estimates of p in (2.18) it is that for the FCC 
lattice which is closest to our best bond estimate (2.16). Furthermore, the maximum 
value of p permitted by the quoted uncertainties for the FCC site problem falls only 
just short of the allowed range (2.17) for the bond problem. 

2.3. Exponents y’ and S 

We conclude this section by summarising our results for a number of series, re-analysis 
of which has not substantially changed earlier conclusions. To study the exponent y’ 
we have, following Sykes et a1 (1976c), analysed high-density expansions for the 
susceptibility, x(q),  and also for the mean size S ( q ) ,  given by 

where pf=p( l -P(q) )  is the density of occupied sites belonging to finite clusters. 
Although x and S must have the same dominant singularity with exponent y ’ ,  the 
exponent associated with the leading confluent term may or may not be the same for 
the two functions. Despite much longer series than previously available, our Pad6 
approximant analysis, based upon pole-residue plots, is inconclusive although not 
inconsistent with the scaling result y ’  = y. However, two rather general features may 
be discerned. First, it appears that the series for the bond problem converge more 
rapidly than for the site problem and, second, that x(q)  converges more rapidly than 
S ( q ) ,  probably in all cases. This second feature has also been commented upon by 
other workers (Hoshen et a1 1979, Nakanishi and Stanley 1980). Thus, for the most 
favourable series, namely x(q)  for the bond problem, the apparent value of y’  lies 
betweeen 1.57 and 1.69 for all four lattices-a little smaller than the probable value 
of y‘ = y = 1.73. On the other hand, the bond series for S(q) give an apparent exponent 
lying between 1.14 and 1.24 for all four lattices. Such a large difference between 
x(q)  and S(q) may indicate that the confluent correction terms for these two functions 
are associated with different exponents. By far the best results for the site problem 
are obtained with the x ( q )  series for the FCC lattice which gives an apparent value of 
y ’=  1.84, a little larger than the scaling value of y’ = y = 1.73. 

Finally, our more precise estimates, (2.5) and (2.6), of p c  have caused us to 
re-examine the series analysis by Gaunt (1977) of the exponent S .  Gaunt made the 
overall estimate of 

S = 5.0k0.8 (2.20) 

plus an additional uncertainty of about * O S  due to uncertainties in p c .  More 
specifically, it turns out that an increase in the value of p c  from the central values 
given by Sykes et a1 (1976d) has the effect of increasing the estimates of 6 also, i.e. 
a lowering of the plots given in figure 1 of Gaunt (1977). In fact, our new estimates 
of p c  are larger than the earlier estimates in all cases and by an amount which increases 
the estimates of S by about half the maximum allowed by Gaunt (1977), i.e. by about 
0.25. Such values of S would be more in line with the estimate of S = 5.3 quoted, 
without uncertainties, by Nakanishi and Stanley (1980) than with the central value in 
(2.20). Unfortunately, a change of this magnitude is largely swamped by the much 
greater inherent uncertainties in S of kO.8. Further analysis aimed at reducing the 
size of these inherent uncertainties is being undertaken. 
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3. Summary and conclusions 

We have derived extensive new high-density series data for bond and site percolation 
on the standard three-dimensional lattices. These series and existing low-density series 
have been analysed by Pad6 approximant techniques involving pole-residue plots. 
The analysis relies heavily on a rather precise unbiased estimate of pc obtained recently 
by Heermann and Stauffer (1981) for the site problem on the sc lattice. Our results 
include precise although biased estimates of pc for all other site and bond problems 
(see (2.5) and (2.6)). Apart from the work of HS, most other work aimed at providing 
precise estimates of pc seems to have been confined to the honeycomb and square 
site problems in two dimensions (Vicsek and Kertdsz 1981, Derrida and de Seze 1982, 
Djordjevic et a1 1982). We hope that our present estimates of pc will provide some 
stimulus for further work on three-dimensional site and bond problems and that 
precise unbiased estimates of pc will soon be forthcoming. 

In addition to estimating pc, we have obtained reasonably precise biased estimates 
of the universal critical exponents y and p, namely 

y = 1.73k0.03 

= 0.454 f 0.008. 

The value (3.1) of y is obtained for the sc site problem and is supported by a similar 
estimate, although with larger uncertainties, for the sc bond problem. It is significantly 
larger than (although not inconsistent with) our earlier series estimate, (2.7), of 
y = 1.66k0.07, due essentially to current estimates of pc being slightly larger than 
earlier estimates. Although MC estimates of y are quite widely distributed, none of 
the estimates y = 1.6*0.1 (Sur et a1 1976), 1.8*0.05 (Kirkpatrick 1976) and 1.78* 
0.05 (Nakanishi and Stanley 1980) are inconsistent with (3.1). 

The value (3.2) of p is an overall estimate obtained for bond percolation on all 
three-dimensional lattices. It is consistent with but more precise than earlier bond 
estimates, such as (1.2) and (1.4). The estimate (3.2) is a little smaller than earlier 
bond estimates due to increased estimates of pc. On the other hand, (3.2) is significantly 
greater than earlier estimates of p, such as (1.1) and (1.3), based upon site percolation 
processes. The fact that the current site estimates (2.18) tend to be even smaller than 
the earlier site estimates is again a reflection of the increased estimates of pc. However, 
the present site estimates (2.18) of p appear to be unreliable since estimates for 
different lattices do not exhibit universal behaviour. So far we have been unable to 
obtain a universal site estimate of p which is consistent with the bond estimate (3.2); 
this problem is being studied further. 

Assuming the estimates (3.1) and (3.2), we obtain the following predictions using 
the standard scaling and hyperscaling laws (Stauffer 1979, Essam 1980): 

LY = -0.64 * 0.05 (3.3) 

S =4.81*0.14 (3.4) 
A = 2 . m  0.04 

v = 0.88 * 0.02 
7 = 0.03 f 0.03. 
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The values (3.1) to (3.7) are in good agreement with the exponent set proposed by 
HS, namely 

CY = -0.64 p = 0.45 y = 1.74 S = 4.87 v = 0.88. (3.8) 

From (3.4) we find 

D =d/(l+S-’)=2.484*0.012 (3.9) 

for the fractal or effective dimensionality, D, of critical percolation clusters (Stauffer 
1979). Note also that the uncertainties in (3.7) barely exclude the possibility of a 
negative value for 7. Such a value does not seem impossible (de Alcantara Bonfim 
et a1 1981) for although 7 is expected to be positive in two dimensions-hyperscaling 
relations plus the conjectures (den Nijs 1979, Nienhuis et a1 1980, Pearson 1980) 
p =& and y = 2 6  implying (Wu 1982) 7 =&-just below the critical dimension 
(d, = 6), it is known, from the leading term in the E expansion (Amit 1976, Priest and 
Lubensky 1976), that 7 is negative. 

The values of S and A in (3.4) and (3.5), respectively, lie close to the centres of 
the ranges of values allowed by the best direct series estimates, namely S = 5.0f0 .8  
as in (2.20) and A=2.2*0.1 (Essam et a1 1976). The value, (3.6), of v is rather 
larger than the central value in many series and MC estimates, namely v = 0.83 5~0.13 
(Skal et a1 1975), 0.825 f 0.05 (Dunn et a1 1975), 0.83 f 0.07 (Cox and Essam 1976), 
0.8*0.1 (Sur et a1 1976), 0.845 f0.015 (Kirkpatrick 1979), -0.84 (Stauffer 1979), 
=0.85 (Nakanishi and Stanley 1980). However, these results are not inconsistent 
with (3.6) if the uncertainties (where given) are taken into account. Some of the 
results quoted above contain rather more detail, namely, the series estimates Y = 
0.825+50Ap,*00.02 (Ap,=p,-O.119) and Y =0.83+ 15ApcfO.01 (Ap,=p,-0.197) 
given by Dunn et a1 (1975) and Cox and Essam (1976) for the FCC bond and site 
problems, respectively. Assuming the new estimates of p c  as given in (2.5) and (2.6), 
we find v = 0.865 * 0.035 and v = 0.87 f 0.02, respectively, in much closer agreement 
with (3.6). In addition, there is some MC work where the central estimates are quite 
close to our scaling prediction (3.6); for example, the estimate v =0.90*0.05 of 
Levinshtein et a1 (1975) and, most notably, the recent estimate Y = 0.89kO.01 of HS. 
Indeed (3.6) is identical to the value v -- 0.88 suggested by HS as ‘a good compromise’. 
To the best of our knowledge, there are no direct series or MC estimates of CY and 7 
with which to compare our scaling estimates (3.3) and (3.7), respectively. 

There have been a number of attempts to determine the percolation exponents 
by RG methods. For a cp field theory, expansions in E = 6 - d have been computed 
up to order (Amit 1976, Priest and Lubensky 1976, de Alcantara Bonfim et a1 
1981). However, different resummation techniques give different estimates for the 
critical exponents (Aharony 1980, de Alcantara Bonfim et a1 1981) so that although 
all these estimates are roughly in the right region their precision is rather low. To 
remedy this situation attempts have been made recently to use the methods introduced 
by Baker et a1 (1976) and employed so successfully (Baker et a1 1978, Le Guillou 
and Zinn-Justin 1977, 1980) for the (p4 field theory. Accordingly, Fucito and Marinari 
(1981) have calculated the vertex functions through two loops for d = 2 , 3 , 4 , 5  and 
their work has recently been extended (Reeve et a1 1982) to three loops for the d = 3 
case. In terms of the dimensionless coupling constant U, the expansions are up to 
order U’ or u 6  and resummation using standard techniques gives (Reeve et a1 1982) 
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y-1.75, 7=-0.16 with a--0.43, p-0.34, 8-6.1, A-2.09, U-0.81 following 
from scaling. Unfortunately, the uncertainties are still expected to be quite large and 
Reeve et a1 feel that extension by another two loops will be required to give results 
comparable in accuracy to those achieved for the rp4 model. 

There has also been a great deal of work using position space renormalisation 
group (PSRG) methods (Stanley et a1 1982) but most of these studies have been confined 
to two dimensions. For d = 3, simple rescaling transformations have been used by 
several authors giving values of U between 1.2 and 1.3 (Kirkpatrick 1977, Sarychev 
1977), -1.04 (Reynolds et a1 1977) and between 1.012 and 1.329 (Yuge 1979), 
compared with the expected value of U - 0.88. Probably the best PSRG estimates 
have been obtained by Burkhardt and Southern (1978) using the Kadanoff variational 
renormalisation transformation for the BCC lattice. They found a = -0.678, /3 - 0.445, 
y - 1.79, 8 - 5.02, v -0.893 which differ from our central values, (3.1)-(3.7), by at 
most 6%. A similar degree of success has been obtained by Payandeh (1980) who 
found a - -0.655, p = 0.481, y - 1.692, U - 0.885, by employing a block cluster 
approach for the sc lattice. 

Finally, we note that we have also tried analysing the same data by following 
different routes. For example, by using (1.5) and (1.6) to first estimate a p, assuming 
this to be universal and using it to obtain biased estimates of p c  for all lattices and 
thence biased estimates of y. Unfortunately, this route runs into difficulties at an 
early stage. For the sc site problem, (1.5) gives p = 0.403*0.009 while (1.6) leads 
to p = 0.45 * 0.025 for the sc bond problem. Since these estimates do not overlap, 
we are unable to decide upon a universal P o  This contrasts with the preferred route, 
followed in § 2, where (1.5) and (1.6) did lead to a universal y (cf (2.1) and (2.3)). 
We have also tried pursuing the route followed by Sykes et a1 (1976d). Their analysis 
started from an estimate of pc=0.119*0.001 for the FCC bond problem. Results 
consistent with such an estimate have been obtained independently by a number of 
researchers (Sykes et a1 1976d, Essam et a1 1976, Dunn et a1 1975) and it is not 
inconsistent with the estimate in (2.5) either. Pole-residue plots then give y = 
1.66*0.11 and adopting this as universal leads to the estimates of p c  for all other 
problems given by Sykes etal(1976d, equations (3.6) and (3.7)). Using these estimates 
of p c ,  we find an overall estimate of p = 0.474*0.014 for bond percolation on all 
four lattices and p = 0.40*0.035 for site percolation on all four lattices. In contrast 
to the situation in § 2, therefore, estimates of p for diferent lattices do exhibit universal 
behaviour for bond and for site percolation. Unfortunately, the two estimates do not 
overlap and must be rejected as unacceptable if one insists on a universal p for both 
bond and site percolation. 

We conclude that much series, MC and RG work remains to be done before the 
critical points and critical exponents associated with the standard percolation problem 
on three-dimensional lattices are known with the same precision and confidence as 
they are for the three-dimensional Ising model. 
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Appendix 1. Bond percolation 

Mean number 

K D  = 2q6 - 2q7 + 6q' - 12q9 + 28q" - 66q" + 159q12 - 386q l3 + 936q14 

-2 288q1'+5 597q16- 13 692q17+33 448q18-81 746q19 

+199724q2'-487 956q21+1 193 006q22-2921 286q23 

+ 7  166119q24-17620472q25+ * * *  

Ksc = 3q'O- 3q" + 15q14 - 30q" + 18q16+65q18 - 225q19 + 288q2' 

- 13 lq2' + 216q22 - 1 272q23 + 2 785q24 - 2 874q25 + 2 097q26 

- 6  483q27 +20 265q2'-34 380q29+38 010q3O-55 083q31 

+ 140 727q32-298 438q33+453 441q34-647 859q3' 

+ 1218 930q36- . . . 

KBCC = 4qI4 - 4q l5 + 28q 2o - 56q21 + 28q22 + 12q 24 + 132q 26 - 5 1 6q27 

+ 588q2' - 204q29 + 180q30 - 312q3' + 617q32 - 3 512q33 + 7 332q34 

-6 O08q3'+3 084q36-5 232q3'+8 464q3'-24 904q39 

+70 9O3q4O-99 600q41+76 120q42-79 756q43+ 149 582q44 

- 291 432q45 + 695 688q46 - 1 262 436q47 + . . . 

KFCC = 6q 22 - 6q 23 + 8q30 + 18q 32 - 68q 33 + 42q 34 + 2q 36 + 24q 38 

-8q39+69q40- 192q41 + 152q42-450q43+759q44-326q4s+72q46 

- 96q47 + 211q48- 672q49+ 1 O74q5O- 2 856qS1 + 4  353qs2 

-4596qs3+8 142q54-8748qss+3420q56-2872qs7 

+5568qs8-9996qs9+18 116q60-34290q61+65796q62-. . . 

Percolation probability 

PD = 1 -q6-6q8 + 6q9-33q1O+ 66q" -221q12 + 546q13- 1 56Oql4 

+ 4  O94qI5- 11 16Oql6+29 454q17-78 330q1'+205 974q19 

-541455q2'+1 414980q2'-3694760q22+9628 l10q23 

-25 074 822qZ4+65 275 798q25 - . . . 

Psc = 1 - q'O- 10qI4 + 1Oq '' - 4q16 - 71q18 + 158q l9 - 163q20 + 64q2' 

-4O2qz2+1 496q23-2 6O8qz4+2 4O8qz5-3 347q26+ 11 616q27 

- 28 170q2' + 41 536q29 - 53 11 lq30 + 109 46Oq3l - 265 894q32 

+491 376q33-747 980q34+1 301 370q3'-2 728 681q36+ . . . 
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PBCC = 1 -4 l4 - 14qz0+ 14qZ1 - 12qZ4- 1 17qZ6 + 282qZ7- 17Iq'' 

-234q3O+288q3'-8O6q3'+3 246q33-4 548q34+2 126q3' 

-2 676q36+7 014q37-10 821q3'+32 024q39-69 888q40 

+70 112q41-52 406q4'+ 108 834q43-210 808q44+406 754q4' 

-901 146q46+1 331 662q47- . . . 
PFCC = 1 -qZ2 - 4q30 - iOq3' + 14q33 - 2q36 - 20q3'+ 44 39 - 56q40 

+88q4' -73q42+222q43-203q44-88q46+84q47-286q48+536q49 

- 727q50 + 1 872q5' - 2 282q5' + 2 586q53 -4 400q54 + 2 906q55 

-1 278qS6+3 560qs7-6076q58+11 344459-17 262q60 

+28862q61-48056q62+ . .  . 

Susceptibility 

X D  = 2q6 - 2q7 + 244' - 48q9 + 2224 - 5944 l 1  + 2 1224" - 6 1544 l 3  

+ 19 392qI4-56 8 1 2 ~ ' s + 1 7 0 2 7 2 ~ 1 6 - 4 9 2 4 9 2 ~ ' 7 + 1  425 300q18 

-4 057 284q19+ll 502 894qZ0-32 275 770q2'+90 167 3084'' 

-250466464qz3+693280792qz4-l 911 928816q2'+. . . 
xsc = 34"- 34" + 60qI4- 120q" + 1O8ql6- 84qI7 +711q1'-2 109qI9 

+ 3  381qZ0-3 675q2'+8 370q2'-26 31Oqz3+57 O72qz4 

-84648qZ5+132 165q26-312 597qZ7+746 814q28-1 377 0O6qz9 

+ 2  241 393q30-4 281 693q3'+9 387 702q3*- 18 676 398q33 

+ 33 057 714q34 - 60 621 324q3' + 122 743 563q36- . . . 
xBCC = 44 l4 - 44 l5 + 112q'O - 2244" + 1 12q22 + 192qZ4 - 3364'' + 1 692qZ6 

-4 98Oqz7+5 70Oqz8-2 628qZ9+5 184q30- 13 032q3'+27 728q3' 

-77072q33+137 232q34-128 552q3'+132 656q36-290 952q37 

+562 268q38- 1 186 740q39+2 461 168q40-3 402 784q4' 

+ 3  584672q4'-5631 280q43+11 298752q44-21 340952q45 

+41259 336q46-67 922 896q47+ . . . 
XFCC = 6qZ2 - 6qZ3 + 724"- 120q3' + 192q3' - 3 12q33 + 168q34 + 72q36 

-132q37+660q38-1 152q39+2 112q40-4 176q4'+5 166q4' 

-7 038q43 + 9  342q44-6 534q45 + 5 520q46-9 816q47+20 424q48 

-40 284q49 + 61 794q50- 102 594q51 + 157 4 5 2 p  - 193 944qS3 

+247 500q54-275 820gS5+251 664q56-341 004q5'+626 388q58 

- 1 107 552q59+ 1744 068~7~O-2 578 416q61+3 806 640q6'- , . . 
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Appendix 2. Site percolation 

Mean number 
K~ = q4 - 4' + 2q6 - 4q + 8q ti - 18q9 + 40q lo - 82q + 153q l2 

- 239q13 + 247q14 + 11Oq" - 1 492qI6 + 5 165q l7 

-13 O77ql8+27 324q19-49 171q20+ . . . 
K s c  = q6 -q7 + 3q lo - 6q l1 + 3q l2 + 12q l3 - 33q l4 + 35q '' + 16q l6 

- 123q l7 + 227q l8 - 254q l9 + 25Oq2O- 4O1q2l + 718q22 - 661q23 

- 882qZ4 + 5 1 15q25 - 12 597q26 + 22 870q27 - 34 350q28 + 40 683q29 

-23 967q30-43 O37q3l+191 234q32-494451q33+ . . 
KBCC = q8 -q9 +4q14 - 8q '' +4q l6 + 12q l7 - 369 l8 +48qi9 - 2qZ0 

- 138q21 + 300q22 - 24Oqz3 - 321q24 + 1 2 9 8 p  - 1 816qZ6 + 173qZ7 

+4901q28-10646q29+7653q30+13 440q3'-45 769q32+54 841q33 

+10689q34- 173416q35+346 809q36-259 616q37-456238q38 

+ 1732 258q39+ . . . 
KFCC = q" - q13 + 6q18 - 12q19 + 6qz0 + 8qZ2 - 12qZ3 + 20q24 - 7 O p  

+ 1 17qZ6 - 98q27 + 92q28 - 174qZ9 + 341q 3o - 692q 31 + 1 042q3' 

-923q33+1 215q34-3 724q35+7494q36-9961q37+11 735q38 

-12 232q39+8 142q40-13 16Oq4l+61 790q4'-165 543q43 

+281 191q44-331 658q45+251 173q46- 104 850q47+ . . . 
Percolation probability 

PD = 1 -q4 -4q6 + 4q7 - 18q + 36q9 - 106q lo + 204q l1 - 43 l q  
+536q13-216q14-2418q'5+10 145ql6-3O 378ql7+7O 38Oql8 

- 140 856q1'+240 769q20+ . . . 
P,c= l - q  6-6q10+ 6q" - 36q13 +63q14- 50q15 - 117q16+ 36Oql7 

-602q18t654q19-l O35q2O+1 94Oq2l-2 789q22+354q23 

+ 9 425q24 - 32 384q2' + 71 838q26 - 131 188qZ7 + 196 124qZ8 

- 196 560q29-22 889q3O+6O2 852q31 - 1714 585q3' 

+ 4  104 136q33+ . . . 
PBCC = 1 -9 8-8q14+ 8q15 - 36q17 + 72q18-72q19- 1O8q2O+462q2' 

- 708q22 + 36q23 + 2 008q24 - 4 464q2' + 3 545qZ6 + 6 244qZ7 

-25 632qZ8+34422qz9+6 774q30-111 432q3l+2O3 611q32 

-106 848q33-362766q34+1 139334q3'-1 513 312q36 

- 129 690q37+5 194 415q38- 10 867 194q39+ . . . 
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pFCC = 1 - 4 l2 - 124 l8 + 12q l9 - 244 22 + 12q23 - 50q 24 + 168q2' - 222q26 

+ 140q27-252q28+558q29- 1 16Oq3O+2 208q3'-2 625q32 

+1 892q33-5 372q34+16440q35-27 103q36+32 568q37 

-39 336q38+34236q39-15 646q40+88 122q41-391 196q42 

+ 871 056q43 - 1 268 571q44 + 1 271 606q45 - 699 941q46 

+208 512q47+ . . . 
Susceptibility 

xD = q4-q5 + 8q6 - 16q7+ 62q8 - 162q9+ 514q10- 1 162q" + 2 659q12 

-3 611q13+904q'4+22 71OqI5-98 465q16i 310 895q17 

-759 348qI8+1 612 128q19-2 910 657q20+ . . . 
xsc = q 6 - q 7  + 12q1'-24q" + 12q"+ 1O8ql3 -297q14+ 371q" 

+277q16- 1 839q1'+4 136q18-6 338q19+ 11 O67q2O-20 525q2' 

+30 331q22- 12 005q23-83 925q24+344 823q25 

-878 6 1 0 ~ 7 ~ ~ +  1827 382q27-3 097 608q2'+3 702 764q29 

- 1 0 2 3 7 9 5 ~ 3 0 - 8 1 1 1 5 7 1 ~ 3 1 + 2 7 4 6 8 8 5 3 ~ 3 2 - 6 9 6 4 3 0 9 5 q 3 3 +  ,.. 
x B C C  = q8 - q 9  + 16q14 - 32q15 + 16q16+ 108q17- 324q18 +432q19 

+276q2'-2322q21+4 530q22-1 904q23-11 226q24+31 796q25 

-33 547q26-34411q27+201 506q28-331 014q29 

+44 214q3'+951 654q31-2 123 221q32+1 619 653q33 

+ 3  123 150q34-12 662446q35+20 134 824q36-5 311 154q37 

-56990251q38+146757 109q39+, . , 
x F C C  = q" -913 + 24q" -48qi9 + 24q20+ 72q22 - 108q23 + 194q24 

-686q25+1 326q26-1 358q27+1 688qZ8-3 810q29+8654q30 

- 16 496q3' + 22 839q3' - 22 9014 33 + 43 426q34 - 127 100q3' 

+252 597q36-356 903q37+439 070q38-435 448q3'+295 530q40 

- 809 096q4' + 3 730 382q42 -9 682 820q43 + 16 416 315q44 

-19719905q45+15692023q46-7436369q47+ . .  . 
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